Use suitable identities to find the products :  $(3 x+4)(3 x-5)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(3 x+4)(3 x-5)$ :

Using the identity $(x+a)(x+b)=x^{2}+(a+b) x+a b,$ we have

$(3 x+4)(3 x-5) =(3 x)^{2}+[4+(-5)] 3 x+[4 \times(-5)] $

$=9 x^{2}+[-1] 3 x+[-20]=9 x^{2}-3 x-20$

Similar Questions

If $x+y+z=0,$ show that $x^{3}+y^{3}+z^{3}=3 x y z$.

Factorise : $2 y^{3}+y^{2}-2 y-1$

Which of the following expressions are polynomials in one variable and which are not ? State reasons for your answer. $4 x^{2}-3 x+7$.

Find the value of the polynomial $5x -4x^2+ 3$ at $x = -\,1$.

Expand each of the following, using suitable identities : $(x+2 y+4 z)^{2}$